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A discrete physical-topological model intended for calculating the elements 
of VLSIC taking thermal effects into account is studied. 

An important problem in the physics of semiconductor devices is multidimensional 
numerical analysis of functionally integrated elements (FIE) of very large scale integrated 
circuits (VLSIC) taking into account thermal effects, which impose a fundamental (principal) 
limit on the increase in the degree of integration of VLSIC [i]. In this connection, in 
this work, which consists of three parts, we describe a model (part I), a method, and a 
program (part II), and the results (part III) of two-dimensional modeling of FIE of VLSIC 
with injected power in the stationary case taking into account the mutual effect of self- 
heating and the temperature of the environment. 

Starting Model. The continuous model is based on the fundamental system of equations 
for the physics of semiconductors, supplemented by the equation of heat conduction, namely 
[21: 

eV2r = - -  q (p - -  n -t-" Nd - -  Na), (1) 

VJp = - -  qR, (2 )  

VJn = qR, (3) 

Jp . . . .  qPpPV~ -- kTppvp, (4) 

J~ = --qp,~nv~ @ kTp~vn ,  

vKvT  = -- Qr  

(5) 

(6) 

with the auxiliary relations 

QT = ( J r "  E), ( 7 )  

n = n, exp [q ( ,  - -  ~)/hTI,  p = n, exp [q ( ~ p  - -  ,)/kT]. (8 )  

The recombination-generation processes are described by the traditional Shcokley-- 
Read--Hall model, while the well-known formula from [3] is employed for the mobility at 
To = 300 K. In addition~ in this work, like in [2], the field dependence of the mobility 
in forward-biased p-n junctions is neglected. The temperature dependence of the mobility 
was described with the help of a formula from [4], and the model described in [2] was 
employed for the intrinsic density. The coefficient of thermal conductivity of silicon 
is described by the formula presented in [2]. 

The boundary conditions are given directly for the four basic unknowns n, p, ~ and T. 
For the surfaces of an element, not covered with ohmic contacts, the following relations 
are employed: 

vn.N s = Vp.Ns = V ~ . N s  = O, ( 9 )  
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TABLE i. Normalizing Coefficients 

Norma!ized quantity Notation Formula ! Value 

Temperature 
Potendals 

Coordinates 

Charge density . 
Diffusion coefficients 

Mobility 
Current density 

Recombination- gener- 
ation rate 

Lifetime 
Coefficient of thermal 

conductivity 

T 
~, On, Cp, Vap p 

x, y 

ni, p, n, Nd-; N a 
kT kT 

T ""' -7- 

J T, JP, Jn 

R 
Tn., Tp 

K 

To 
~ro = kTo/q 

L D = ~ /  B~T o 

qn~ (To) 
ni (To) 

Do 

" Do/(pl. ~ 

qDoni (To)/L o 

Don~ (To)/L2D 

L~/Do 

K (To) 

300 K 
0,0258 V 

3,31.10 -3 cm 

1,5.101o em-S 

I era2/see 

38,7 cm z t~ V �9 sec) 

0,725.10 -8 A/cm z 

1,37.10 za cm'3.  sec" I 

1,1.10-5 sec 

1,5486 W~cm.  K) 

The electrostatic potential and the mobile carrier where N S is the normal to the surface. 
density on the ohmic contacts are calculated with the hlep of the following relations: 

nlo.e---- n~ ( -5 1 -5 , (ll) 

r - N d _ _ N a  2 

The b o u n d a r y  c o n d i t i o n s  f o r  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  (6)  a r e  as  f o l l o w s :  1)  a t  
t h e  h o u s i n g - c r y s t a l  b o u n d a r y  t h e  t e m p e r a t u r e  Th.  c i s  c o n s t a n t  and  e q u a l s  t h e  t e m p e r a t u r e  
of the environment Tenv: 

~.c = T~nv,; (13) 

2) there is no heat flux through the remaining surfaces surrounding the element: 

v T . N  s ---- O. (14) 

To decrease the volume of computer calculations, in the starting model under study the 
variables are normalized. The values of the coefficients are given in Table i. After the 
variables are normalized and a number of simple transformations are performed, the basic 
equations (1)-(8) reduce to the following: 

V ~  = n - - p - - N d +  Na' (15)  

V [l~p (PV~ -5 TVp)] --  R, (16)  

V [P,,~ (nv~ -- Yvn)] = -- R, (17) 

V zU ~ • (Jr" E)/3, (18) 

n = ni exp [(~ - -  ~i',~)/Tl, p = ni exp [(~v - -  ~)/T], (19)  

where U = T-x/". The corresponding normalized form of the relations (9)-(14) can be 
easily derived, and is thus omitted here. 
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Fig. i. Grid template. 

Discrete Physical-Topological Model. The system of equations studied above and the 
auxiliary relations, comprising the continuous model, cannot be solved for n, p, ~, T(U). 
Because of this, with the help of the method of finite differences we transfer from the 
starting continuous model to the discrete model. To this end, on a grid covering the 
apparatus we apply to Eqs. (15)-(19) the integrointerpolation approach of A. N. Tikhonov 
and A. A. Samarskii and, in particular, the method of G. I. Marchuk [5] together with the 
hierarchy of physical assumptions for approximating the integrals. 

The single physical assumption that the charge density 0 in the cell ABCD remains 
constant is employed for Poisson's equation in the approximate problem on a fragment of the 
grid (Fig. I). This leads to the following finite-difference approximation of Poisson's 
equation for the internal nodes of the grid (i, j): 

* B* D* E* * C~,/%,: = , ( 2 0 )  Ai,l~i-Lj + ~ , /~+ : . j  + i i~i .J-a ' - [ -  ~,1~i,~+1 + F~i, 

where 

A~f = 0,5 (hyj+l + hyi)/hx,; B~i = A*i+l,]; 

D**,i 0,5 (hxi+1 + hxi)/hVj; E~/ D* " -~- = i , : + l ,  

C 9.,,, = - -  (A~ + B~i + O~i, + E~i):, 

F~i = p,,j (hx~ 27 hx~+z)(hgj+~ + hyj)/4;  

p~,j = (ni)~,~ exp [(*i.~ - -  ~ni.j)/T~.i] - -  (n~)i,i exp [(~pi,~ - -  ,~ .yT~ .~]  - -  hrdi.j + Naid .  

To complete the construction of the difference scheme a finite difference approximation of 
the boundary conditions must be constructed. The method of internal boundary conditions is 
employed on the free surfaces. This means that, for example, the approximation ~/3x = 0 
is performed with the help of formulas of the form (~I j -- ~2.j)/hx2 = 0, and in addition 
the point with the indices i, j lies on the boundary o~ the e~ement and the environment. 
It is not difficult to verify that the value of the potential ~l,j sought in this case will 
be determined with second-order accuracy relative to the unknown value at the internal 
node ~,j. 

Let us examine the question of constructing difference schemes for the continuity 
equations. We note that Eqs. (4) and (5) were written under the assumption that the effect 
of the thermal currents of holes and electrons can be neglected [6]. In this connection, 
in approximating the continuity equations we employ the assumption that the temperature 
is constant over the structure of the element. We shall study the equation of continuity 
of holes (16). In approximating it with the help of the method of G. I. Marchuk we employ 
the following physical assumptions: I) the electrostatic potential varies linearly; 2) 
the rate of recombination-generation R on the cell A~CD (see Fig. i) is constant; and, 
some other assumptions. This leads to the following approximationat the internal node i,j: 
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[(G~+I/2 ,i + a*-~ /2 . )  h~ + (a, . i+t /2  + a, , i-1/~) hd  p,.~ . 

- -  di+ l / 2.ih'~P i+ l .l - -  d f - l  / 2.ihzPi-1 ,i -~ d, ,i+ l / 2hlPi ,f+ l - - ' d  i . i_l  / 2hlPi , i --I  = -- R,.jh~h~, ( 2 1 )  

where hi = (hxi+~t + hx~)/2; h~ = (hYi+l + hy~)/2; 

I(r - -  r 
ai+sd : I~pi+s;i 

exp [2 (xpi+~ 3 - -  th,~)/(T~+~,~ + T~,j)I - -  1 
; ( 2 2 )  

di+sd =: ai+~.~ exp [2 (,,+~.~.j - -  ~;~d)/(Tf+~.d + T~.j)], (23) 

and s assumes the values --1/2 and 1/2. 

The foregoing approximations for the coefficients ai+s, j and di+s. i are employed when 
A~T_ E[le p, e ~2] , where A~T---- 12(~+~s~---~)/(T~+~sf+T~)[;, , , , ~. is determinea-byp the word length 
of the computer employed (for the ES computer caP A 174), while ~,6[I0 -~, lO-Z]. . In the 
case when A~T < exP, the following expressions are employed for ai+s, j and di+s,j: 

a~+~,j = - -  0,5[~pi+,,j  [(%+2~,~ - -  ~h,s) - -  (7"t+~,j + T~.s)l/hx~+,12+s; 

d~+,,j = 0,St%~+s,j[(,~+~,j - -  ,~,j) + (T~+~.,~ + T,,i)l/hx~+~/2+5. 

(24) 

(25) 

This situation appears often in quasineutral regions of the structure. A number of other 
approximations can also be employed instead of (24) and (25), but in so doing Ohm's law may 
not be obeyed when it should be obeyed. For A~T > e2P two different situations arise. 
When (~i+~, j--~, j) >0: 

a ,+s , i  = 0; di+s,~ = Vp,+s,J ( ~ . :  - -  @*.J)/hx,+5+~ / 2' ( 2 6 )  

and  when (%+~s,j - -  **,j) < 0: 

ai+s.j = - -  Fvi+~.J (~i+~,.J - -  ~i,J)/hxi+l/2+S; d~+~,i = 0 ( 2 7 )  

It should be emphasized that the cases (26) and (27), studied above, do not necessarily 
arise for large reverse biases, but they are often encountered at low temperatures. As a 
result, they must be taken into account in constructing a discrete modeltaking into 
account thermal effects. 

Expressions for the other coefficients ai, j+s, dc, i+s (s~-+_I/2) can be easily derived 
by interchanging the indices and replacing hx by hy. We note that at T = 300 K, in the 
one-dimensional case, the foregoing finite-difference approximation to the continuity 
equation is identical to the formulation of the Sharfetter-Gummel type [7]. The boundary 
conditions can also be approximated by the method of internal boundary conditions. A 
difference scheme is also constructed by an analogous method for the equation of continuity 
for electrons (17). 

The finite-difference approximation of Eq. (18) can be derived by the method of 
G. I. Marchukusing thephysical aesumpti0n that the density of the power liberated in 
the cell ABCD remains constant. This leads to the following approximation at the internal 
node i, j: 

ALu~_~,~ + B~ju~+~ . . . .  j + D~U~ j_~ + EZ~U~,s+~ + C~U~,~ = F~..,, (28)  

where Fi,sU = ~JTxEx + JTyEy)i,~. The boundary conditions can also be approximated by 
the metho~ of internal boundary conditions. 

As a result of the foregoing transformations weobtain a complete difference shceme, 
consisting of the difference schemes for the Poisson equation, the equations of continuity 
for electrons and holes, and the analog of the heat-conduction equation. Their matrix 
form is: 

B * ,  = F * ,  ( 2 9 )  

�9 B n n = F  ~, . ( 3 0 )  
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BPP =Fp, (31) 

B'*U = F u. (32) 

The complete form of the matrix of coefficients B~, B n, B p and the column vectors F~, F n, 
FP, F U can be derived by the foregoing method (see (20)-(28)). This system of coupled 
nonlinear algebraic matrix equations (29)-(32), supplemented by a relation coupling U and 
T, comprises the discrete physical-top.logical model of FIE of VSLIC taking into account 
thermal effects. To implement the model, it must be solved for the unknown grid vectors, 
i.e., {~i j}, {ni, j}, {PL J}, {T~, j}, {U L j} , where the indices i, j run through all values for the 
grid covering the element. In conclusion, we note that after the grid vectors are found, 
the unnormalized values of the quantity sought can be easily calculated with the help of 
the coefficients given in the table. 

NOTATION 

c, dielectric constant of the semiconductor; ~, electrostatic potential; n and p, 
electron and hole densities; N d and Na, densities of ionized donors and acceptors; Jp and 
Jn, hole and electron current density vectors; q, electron charge; R, excess of the re- 
combination rate over the generation rate; ~p and ~n, hole and electron mobilities; k, 
Boltzmann's constant; T, temperature; K, coefficient of thermal conductivity of silicon; 
QT, density of the power liberated in the elements; JT, total current density vector 
(JT = Jp + Jn); E, electric field intensity (E = --V~); ni, intrinsic density; #n, #p, 
quasi-Fermi levels of electrons and holes; rp, Tn, lifetimes of holes and electrons; P0, 
mobility at T = To; V , voltage applied to the ohmic contact; Zi,j, value of the variable app 
Z at the node of the spatial grid with indices i, j; JTx, JTv, X and Y-components of the total 
current density vector; E x and Ey, components of the electric field intensity vector; and <, di- 
mensionless coefficient of the transformation from (6) to (18), equal to 1.3367.10 -13 for 
silicon. 
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